Tristörler

Durum
Üzgünüz bu konu cevaplar için kapatılmıştır...

Mesut

Onursal Üye
Onursal Üye
Katılım
9 Şub 2007
Mesajlar
765
Puanları
206
KONU: A. TRİSTÖRÜN YAPISI VE ÖZELLİKLERİ

a) Tristörün yapısı ve çeşitleri :


tri101.jpg



Tristör en az dört silisyum yarı iletken parçanın birleştirilmesinden oluşan , anahtar ve doğrultma görevi yapan bir elemandır. SCR ( Silikon Kontrollü Redresör) ismi de verilir. Değişik güçte tristörler imal edilmektedir. Çalışma sahası ; 50 V – 8000 V , 0.4 A – 4500 A arasında olabilmektedir.

Tristörler sırasıyla birbirini takip eden “ P ” ve “ N ” tipi silisyumdan yapılmış dört yarı iletken tabakadan yapılmıştır. Bu dört tabakanın en dışındaki “ P ” tabakası anot, diğer dıştaki “ N ” tabakası katot görevi yapar. Yapısındaki yarı iletkenler çeşitli kalınlıktadır ve değişik miktarlarda katkılandırılmıştır. Bu yüzden her katmanın iletkenliği farklıdır.

Yukarıdaki şekilde tristörün yapısı, diyotlu ve transistörlü eşdeğer devresi göstererilmiştir. Transistörlü eşdeğer devresinde G ucuna bir akım verilince NPN tipi transistör iletime geçerek kollektör akımı geçirmeye başlar. Bu kollektör akımı PNP tyransistör baz akımını sağladığı için PNP tipi transistörde hemen iletime geçer ve emiter – kollektör üstünden NPN tipi transistörün beyzine akım gönderir. Dolayısı ile G ucundan uygulanan akım kesilse bile transistörler birbirini besleme devam eder, iletimde kalırlar.

9 çeşit tristör vardır ;

1) Standart tristör: Ağır sanayi cihazlarında AC ve DC de 400 – 1000 Hz,4000V,1000A

2) Hassas tristörler : Düşük gerilimli elektronik devrelerde. 0,7V – 100uA ile tetiklenebilir.

3) Hızlı tristörler: 10 KHz’ lik frekans sınırında çalıştırılabilirler.

4) Komplemanter ( Tamamlayıcı) tristör : Geyt anota yakındır. Negatif pals ile çalışır.

5) İki geytli tetrod tristör

6) Geyt ile yalıtkan olan tristör ( GTO ) , ( GCS )

7) Fototristör

8 ) Asimetrik çok hızlı tristör ( ASCR )

9) Amplifikatör geytli tristör.


b) Tristörün uçlarının açıklanması :

Aşağıda bir tristörün sembolü gösterilmektedir. Tristör 3 elektrotlu ( uç , ayak ) bir elemandır. Bu uçlar Anot, katot ve geyt ( gate , kapı )’ dir



image004.jpg



c) Tristörün çalışması :


image006.jpg




Tristörü doğru polarize etmek için anotuna ( + ) katotuna ( - ) gerilim verilmelidir. Uygulanan bu gerilim değeri çok arttırılırsa bir noktadan sonra tristör aniden iletime geçip A –K direnci dolayısı ile A – K voltajı düşer geçen akım artar. Eğer ters polarize edilip gerilim arttırılırsayine bir noktadan sonra ters yönde ani akım artışı olur. Bu ise istenmeyen bir durumdur ve tristörü bozar. Tristörün doğru polarize edilip A –K voltajının arttırılması ile iletime geçirilmesi kullanılan bir yöntem değildir. Çoğunlukla A – K doğru polarize edildikten sonra geyte ufak bir gerilim darbesi verilip tristör iletime geçirilir. Tristör bu şekilde iletime geçtikten sonra geyt gerilimi kesilse bile tristör iletimde kalır.

d) Tristörün kullanım alanları :

Kumandalı doğrultucular, elektronik kontaktörler, zaman rölesi, DC ve AC motorların hızlarının ayarlanması ve dönüş yönlerinin değiştirilmesinde kullanılır.

KONU: B. TRİSTÖR TETİKLEME YÖNTEMLERİ

a) Tristörü tetikleme ve yöntemlerinin açıklanması:


Tristör birden fazla yöntemle iletime geçirilebilir. Bu metotlar şunlardır.

· Anot-Katot gerilimdeki hızlı bir değişim: Anot – Katot gerilimi iletim yönünde çok hızlı bir değişim gösterirse tristörü iletime geçirebilir. Nedeni de tristörün birleşim bölgelerinin bir kondansatör gibi davranmasıdır.

· Doğru yönde Anot – Katot geriliminin çok arttırılması : Geyt gerilimi sıfırken ( Ig=0) anot – katot gerilimi çok arttırılırsa tristör kırılma voltajından sonra iletime geçer.

· Işıkla tetikleme : Diyot ve transistörlerde olduğu gibi tristörlerde de foto elektrik etkisi ile elektron hareketi başlatılabilir. Işık bir mercek yardımıyla silisyum yapıya uygulanır. Anot katot arası iç direnç küçülerek tristör iletime geçer.

· Sıcaklığın arttırılması : Sıcaklığın artması ile tristör iletime geçebilir. Ancak bu istenmeyen bir durumdur. Tristörün bileşim noktasındaki ısının artması kaçak akımların artmasına neden olur. Eğer kaçak akım seviyesi eşik seviyesini geçerse tristör kendiliğinden iletime geçer.www.diyot.net

· Geyt’ine düşük gerilim, küçük akım uygulama : Ençok kullanılan yöntemdir. Geyt’e uygulanan düşük gerilimlerle, büyük gerilim ve akımlı devreler kontrol edilir. Tristörün anot – katot arası direnci çok büyüktür. Geyt’e uygulanan düşük gerilim, anot – katot arası direnci küçültür ve tristör iletime geçer. Bu yöntem DC ve AC devrelerde uygulanırken devre özelliklerinden dolayı farklı şekillerde uygulanır. Tristörü DC’ de tetiklemek gayet basitken AC’ de tetiklemek için Geyt polarması doğrultulmalıdır.

b) Tristörün DC’ de tetikenmesi yöntemi :

Tristörün DC tetiklenmesinde geyte tetikleme veren S anahtarı açık olduğu sürece Anot ve katot’un doğru polarma olması , tristörün çalışması için yeterli değildir. S anahtarı kapatılınca tristörün geyt ucu tetikleme voltajını alacağından iletime geçer ve yükü ( lambayı ) çalıştırır. Artık geyt akımı kesilse bile tristör iletimde kalıp lamba yanmaya devam edecektir. Geyt’i tetiklemek için birinci şekilde ayrı bir kaynak kullanılmış ikinci şekilde ise aynı kaynaktan tetikleme voltajı alınmıştır.

c) Tristörün AC’de tetiklenmesi yöntemi :

Tristörü AC’de çalıştırmak DC’ de çalıştırmaya nazaran biraz daha dikkat isteyen durumdur. Çünkü AC voltajda bilindiği üzere akım yönü devamlı değişmektedir. Yani tristörün Anot – Katot ucu devamlı polarma değiştirmektedir. A-K arasına bir süre pozitif alternans gelirken bir süre de negatif alternans gelir. Pozitif alternanslarda tristör tetiklenirse iletime geçer negatif alternanslarda ise Anot-Katot zaten ters polarma olduğu için akım geçirmez. Yani yalıtımdadır. Yalnız her pozitif alternanstan önce tristör yalıtımda olacağı için her pozitif alternansta tetikleme verilmelidir. Bu işlem AC gerilimin bir kısmının değerinin düşürülüp sadece pozitif kısımlarının seçilip geyt’e uygulanması ile sağlanır. Yani A-K üstündeki voltaj paralel bir koldan gerilimi düşürülüp bir diyot ile sadece pozitif kısımlar seçilir ve geyte uygulanır. Bununla ilgili devre şeması aşağıda gözükmektedir.

d) Tristörün tetikleme yöntemlerinin şekille gösterilmesi:

image010.jpg



KONU: C. TRİSTÖRÜ DURDURMA YÖNTEMLERİ

a) Tristörü durdurma yöntemlerinin açıklanması :


DC gerilimde tristör bir defa tetiklendiğinde tetikleme gerilimi kaldırılsa bile sürekli iletimde kalır. DC gerilimde çalışma devam ederken tristörü durdurmak gerekebilir. Tristörü durdurmak için , seri anahtarla durdurma, paralel anahtarla durdurma ve kapasitif durdurma yöntemleri uygulanır. Temelde bütün bu yöntemler tristörün anot akımını kesmeyi amaçlamaktadır.

b) Tristörün seri anahtarla durdurulması :


image012.jpg



Tristörün anot akımının geçtiği yol üstüne anahtar koyup, açarsak anot akımı kesilip tristör durdurulur. Anahtar tekrar kapansa bile çalışmaz. Çalışması için geyte tetikleme vermek gerekir. Şekildeki devrede S1 ve S2 anahtarları açıldığı zaman anot akımı kesilerek tristör yalıtım durumuna geçer.

Odaklayıcı soru : AC devrede tristörü durdurmak için anot akımını kesmek gerekli midir?

c) Tristörün paralel anahtarla durdurulması :


image014.jpg



Tristöre paralel bir anahtar bağlayarak da anot akımı kesilebilir. Çünkü anahtara basıldığı anda anot akımının tamamı anahtar üstünden geçer , anahtar tristörün A – K arasını kısa devre etmektedir. Anahtardan elimizi çeksek bile artık tristör çalışmaz. Çalışması için geyte tekrar tetikleme vermek gerekir. Şekildeki devrede S2 anahtarı tristörü durduran anahtardır.

d) Tristörün kondansatör ile durdurulması :



image016.jpg




Tristörün A – K arasına bir an ters gerilim uygulamak tristörü yalıtım durumuna getirebilir. Ters gerilimi ayrı bir kaynak vasıtasıyla uygulayabileceğimiz gibi yüklü bir kondansatörü tristör üstünden ters deşarj etmek vasıtasıyla da sağlayabiliriz. Bu yönteme “zorlanmış komitasyon” yöntemi de denmektedir. Yukarıdaki devrede S1 ile tristör iletime geçirildiğinde kondansatör de direnç üstünden kısa bir sürede şarj olur. Daha sonra S2 butonuna basınca yüklü kondansatör tristörün katodundan anoduna doğru deşarj olmak isteyecektir. Akmakta olan anot akımına zıt yönde olan bu deşarj akımı kısa süreli yüksek bir değerde olduğu için anot akımını bir an engelleyip tristörün yalıtıma gitmesine neden olur.

e) Tristörü durdurma yöntemlerinin şekil çizerek açıklanması :


image018.jpg



Şemadaki devrede tristörlerin her biri iletime geçerken diğerini kapasitif yolla yalıtım durumuna sokar.

KONU: D. TRİSTÖRÜ KORUMA YÖNTEMLERİ

1. Tristörü koruma yöntemlerinin açıklanması:

Tristörlerin, üzerlerinden geçen akımların yüksek olmasından dolayı çok dikkatli kullanılmaları gerekir. Tristörün bozulması, tristöre zarar verdiği gibi kullanıldığı sisteme veya makineye da zarar verir.

Örneğin sanayide tristörler motor kontrol devrelerinde oldukça sık kullanılırlar. En ufak bir hatada tristör bozulursa motorun tam devirde dönmesine yol açabilir. Bunun sonucunda makinenin zarar görmesi kaçınılmazdır.

Tristörün korunmasını iki bölümde toplayabiliriz.

a) Geyt tetikleme devresinin korunması

b) Anot – Katot devresinin korunması.


a) Geyt tetikleme devresinin korunması: Tristörler P-N bileşimlerinden oluşan yarı

iletken parçalar olduğu için direkt olarak besleme gerilimine bağlanmaz. Çünkü üzerlerinden fazla akım geçeceğinden tristör bozulur. Bu yüzden Tristör geyt ucundan tetiklenirken seri bir direnç üzerinden gerilim uygulanır. Bu direnç geyt ucundan aşırı akım geçişini engeller. Direnç değeri hesaplanırken uygulanan Geyt gerilimi ( Vgg ) , Tristörün geyt ucunun çekeceği akım ve tristör iletimdeyken geyt-katot voltajı dikkate alınır. Tristörlerin geyt voltajı genellikle bir kaç volt civarındadır..

b) Anot-katot devresinin korunması : Tristör kullanılırken, anot akımının dayanabileceği değerden fazla olmaması gerekir. Bu yüzden bir tristör asla yüksüz çalıştırılmaz. Yükte çalıştırılırken de tristör yük akımını kaldırabilecek değerde seçilir. Eğer yük akım değeri maksimum anot akımına yakın değerlerdeyse, bu durumda da tristör için yeterli bir soğutma sağlanmalıdır. Her ne kadar tristörden makul bir seviyede akım geçse de , bu akım değeri sınıra yakın olduğu için tristörün ısınmasına yol açar ve 130’C civarında tristörün bozulmasına sebep olur.

Ayrıca tristör kullanılırken ileri ve ters kırılma gerilimleri de dikkate alınmalıdır. Ters yöndeki aşırı bir gerilim yine tristörü bozar. Bu yüzden tristör kırılma voltajları yeterince yüksek olanlar seçilmelidir.

2. Tristörün aşırı akımda çalışmasının sakıncaları:

Tristör aşırı akımda çalıştırılırsa tristörde ısınma meydana gelir. Bu ısı belli bir seviyeyi aşarsa tristör bozulur. Ayrıca dayanabildiği en fazla geyt ve anot akımlarının üstünde akım değerleri uygulanırsa p-n bileşimleri ya kısa devre olur ya da bağlantıları eriyerek kopar ve açık devre olur.

.3. Tristörün aşırı gerilimde çalışmasının sakıncaları:

Tristörün geytine aşırı gerilim uygulanırsa üzerinden fazla akım geçip bozulmasına yol açar. Eğer aşırı gerilim Anot-Katota uygulanıyorsa ya düzensiz iletime geçme durumları olur ya da tristörün bozulmasına sebep olur.

4. Endüktif yüklerde tristörü korumanın önemi:


Bir tristörde yük olarak bobin kullanılıyorsa, herhangi bir sebeple tristörün yalıtıma geçirilmesi ve yük akımının aniden kesilmesi sonucunda yük olarak kullanılan bobin uçlarında besleme geriliminin yaklaşık üç katı genliğe sahip, yük frekanslı bir gerilim oluşur. Bu gerilimin genliği besleme geriliminin üç katından başlayarak gittikçe söner ve bir süre sonra sıfıra düşer. Ancak kısa bir süre için de olsa tristörün dayanma gerilimini aştığı taktirde tristöre hasar verebilir.

Tristörü bu gibi durumlarda korumak için şu gibi tedbirlere başvurulur; Yüksek frekanslı gerilimin çabuk sönmesini sağlamak için yüke paralel bir kondansatör bağlanabilir. Ayrıca tristöre zıt yönde gerilim yüklenmesini önlemek için tristörün anot-katot arasına veya yüke paralel ters yönde diyot bağlanabilir.



image020.jpg


image022.jpg



E. <![endif]> TRISTORLERDE YARIM VE TAM DALGA GUC KONTROLU

1. Guc kontrolunun tanimi :

Bir cihazin akim, gerilim , frekans, faz, iletim zamani orani ( duty-cycle ) gibi ozelliklerini degistirerek calisma gucunun ayarlanmasina guc kontrolu denir.

2. Tristorlerde guc kontrolu cesitleri :

Tristorlerde guc kontrolu tristorun tetiklenme zamaninin degistirilip iletimde kalma oraninin degistirilmesi ile yapilir. Temelde yarim dalga ve tam dalga olmak uzere 2 cesit guc kontrolu vardir. Tristorlerle guc kontrolunun en buyuk avantaji gereksiz guc harcamasinin olmamasidir.

3. Yarim dalga guc kontrolunun sekil ustunde aciklanmasi :



image024.gif



Tristorler dalga seklinin sadece bir saykilini kontrol eder ( dogrultur) . Negatif alternansta tristor yalitimda oldugu icin yuk akimi sifirdir. Tetikleme pals zamanlamasini degistirerek sebeke voltajinin 0 – 180 dereceleri arasi kontrol edilebiliriz.

4. Yarim ve tam dalga guc kontrolu arasindaki farklar:


· Yarim dalga tristorlu dogrultmaclar pozitif alternansi, tam dalga tristorlu dogrultmaclar ise her iki alternansi dogrultur.

· Yarim dalga tristorlu dogrultmaclarda bir tane tristor kullanilir. Tam dalga tristorlu dogrultmaclar ise iki tane tristor kullanilir.

· Yarim dalga tristorlu dogrultmaclarda ortak uclu trafo kullanilmasina gerek yoktur. Tam dalga tristorlu dogrultmaclar ise ortak uclu trafo kullanilmasina gereklidir.
 
THYRISTÖRLER:

Thyristörler fonksiyonlarına göre ve yapılarına göre hatta bacak sayılarına göre pek çok türe ayrılırlar. Bunlarda bazıları çok yaygın olarak kullanılmasına rağmen bazılarının kullanımı çok dar alanlarla sınırlıdır.
Thyristörlerin ortak özellikleri;
1- Fiziksel ölçüleri kontrol ettikleri güce göre çok küçüktür.
2- Ömürleri, yarı iletken oldukları için teorik olarak sonsuzdur.
3- Çok az ısındıkları için fazla soğutma problemleri yoktur.
4- Ateşleme için küçük gerilimler yeterlidir.
5- Çok az kayıpla çalışırlar, verimleri yüksektir.
6- Yarı iletken oldukları için mekanik darbelere karşı duyarsızdırlar.
7- Bakım gerektirmezler
8- t/2 saniyede açılabilir ve birkaç mikrosaniyede kapanabilirler.

Thyristörlerin genel olarak türleri;

1- Tek yönlü akım ileten thyristörler.
a- SCR Silicon Controlled Rectifier yada Silikon Kontrollü Doğrultucu.
b- SUS Silicon Unidirectional Switch yada Silikon Tek yönlü Anahtar .
c- PUT Prgrammable Unijunction Transistor ayada Programlanabilir

Tek jonksiyonlu (bağlantılı) Transistör.
Yukarıdaki 1. gurubu aslında bu kadar kısa değil. Bu türlerin kendi içlerinde de ışığa vs. duyarlı türleri de bulunmaktadır. Yukarıdaki gurup tek yönlü akım ileten thyristörlerin en temel üyeleridir.
2-Çift yönlü akım ileten thyristörler.
a- DIAC
b- TRIAC
2. gurupta da daha başka elemanlarda olmasına rağmen DIAC ve TRIAC temel elemanlardır. Şimdi bunların bazılarının basit çalışma şekillerini ve bazı uygulamalarını inceleyelim.

SCR
SCR , silisyumla yapılmış 4 katmanlı yarıiletken bir elemandır.



t101.gif




Bu katmanları oluştururken Gate (kapı) BJT transistör imalatındaki beyzler gibi ince yapılmaz. SCR nin çalışmasını anlamak için daha basit olan BJT transistör modeli kullanılır. Buna göre bir SCR iki BJT transistörden oluşmaktadır.


t102.gif




Transistörden oluşan modeli incelediğimizde, T1 transistörünün beyzi ile yani GK ya, T! transistörünün emitörü arasına yani K (Katot) arasına pozitif bir gerilimin bir an için uygulandığını düşünelim. Buna ateşleme denir. Bu anda T1 transistörü iletime geçerek T2 transistörünün beyzi ile kollektörünü birleştirecektir. Yani PNP olan T2 transistörünün kollektörü ile beyzi T1 transistörünün emitör gerilimine çekilecektir. Bunun sonucu olarak da T2 transistörü iletime geçecek ve T2 transistörünün emitöründen ya da SCR nin Anodundan T1 transistörünün emitörüne doğru yada SCR'nin Katoduna doğru bir akım akmaya başlayacaktır. Anod akımı amaya başladığı durumda her iki transistörün beyz ile kollektörleri diğeri tarafından kısa devre edilmiş durumdadır. Bu anda SCR nin gate sine uygulanan pozitif gerilimi kaldırsak bile Anod akımı akmaya devam edecektir. Yani SCR ateşlendikten sonra ateşleme gerilimi ortadan kalksa bile anod akımı akmaya devam edecektir.

Yukarıdaki iki paragrafta anlattığım olayları grafik üzerinde gösterirsek SCR nin karakteristik eğrisini elde ederiz.


t103.gif



SCR nin karaktestik eğrisindeki terimlerin anlamları;
IA: Anod akımı
iF: O anki en büyük anod akımı
IH: SCR yi açık (ON) durumunda tutan akım yada tutma akımı.
iR: En büyük negatif kapama (OFF) akımı.
VRSL: En büyük negatif kapama gerilimi.
VF: Geçirme durumunda (On durumunda) anod - katod gerilimi.
VFmin: Geçirme durumundaki minimum (On durumunda) anod - katod gerilimi.
V(BO): Devrilme (anod - katod arası iletime geçilme) gerilimi. Bu an IG akımı akar.
V(BO)0: Devrilme (anod - katod arası iletime geçilme) gerilimi. Bu an IG akımı
yoktur.
Bir SCR nin ateşlenmesi için basit yöntemler vardır. Aslında bu yöntemler bütün thyristörler için de geçerlidir. Bu yöntemler;
1- Yüksek gerilimle ateşleme:
Bu durumda thyristörün Anodu ile katodu arasına yeteri kadar bir yüksek gerilim uygulamakla yapılan ateşleme türüdür. VA>=V(BO) oluşması yeterlidir. Bu tür ateşleme genellikle thyristör türlerinden dört katlı diyot yapılarından SCHOKLEY ve DIAC larda kullanılır.
2- (dv/dt) ateşlemesi:
Her PN birleşimi arasına bir kapasitans vardır. PN birleşimin yüzeyleri büyüdükçe bu kapasitans ta artar. Thyristörün ateşlenmesi için herhangi bir gate akımı uygulanmadan Anod - Katod arasına bir pals gerilimi uygulanır. Bu pals gerilimi thyristörün PN birleşimleri arasındaki kapasiteleri dolduran ani bir akım oluşturur. Bu akım tyristörün ON olma zamanından daha hızlı ise thyristör iletime geçer.
3- Termik ateşleme:
Bir PN birleşimde yüzey sıcaklığının her 80C artması sızıntı akımını yaklaşık iki kat arttırır. Eğer thyristör üzerindeki sıcaklık yeteri katar arttırılırsa devrilme gerilimi olan V(BO) azalır ve thyristör iletime geçer.
4- Kumanda ile ateşleme:
Bu ateşleme yöntemi özellikle SCRler de yaygın olarak kullanılır. SCR'nin gate ile katodu arasına yeterli gerilim uygulanarak yapılır.


t104.gif



Söndürme Yöntemleri:

Bir thyristörü söndürmek (Anod akımını durdurmak) için üzerinden geçen akımı, tutma akımının altına düşürmekle gerçekleştirilir.
1- Kumanda akımı ile söndürme:
Genellikle küçük thyristörler için geçerlidir. Gate - Katot arasına uygulanan ters kumanda akımı ile gerçekleşir. Büyük akım geçen devrelerde kullanılmaz.
2- Komütasyon gerilimi ile söndürme:


t105.gif



Bu yöntemde thyristör üzerinden geçen akım bir an için sıfır yapılır. IA akımı sıfır olduğu zaman thyristör kendiliğinden söner. Anod akımı sıfır yapmak için anod akımını oluşturan kaynak gerilimi ters olarak uygulanmalıdır. Kaynak gerilimi kendiliğinden tersine dönemez. Bunu gerçekleştirmek için thyristörün anodu ile katodu arasına bir komütasyon devresi yapılır. Komütasyon devresi içinde bir bobin vardır. Komütasyon devresi içindeki S anahtarı kapatıldığında LK bobini üzerinde oluşan gerilim ile komütasyon gerilimi olan VK gerilimi toplanarak ters yönde thyristör üzerine uygulanır. Thyristör üzerine uygulana bu ters gerilim bir an için IA akımın yok eder ve thyristör OFF olur.www.diyot.net
Bu tür komütasyon devrelerinde kapatma gerilimi çok fazla olursa thyristör tahrip olabilir.

AC yüklerinin açıp kapatılmalarında anahtar olarak bir SCR kullanılıyorsa, SCR' nin kapısından (gate) uygun büyüklükte bir akım akıtmak yeterlidir. Fakat bir şey hiç unutulmamalıdır. Bir SCR' nin anodu ile katodu arasına AC voltaj uygulansa bile, SCR her iletime geçtiğinde üzerinden sadece yarım dalga akım geçecektir. Yani üzerinden geçen akım her ne kadar AC olsa da tam değil yarısı. Bunun faydaları da vardır. Özellikle büyük güç harcayan doğrultucu devrelerde voltaj ayarlamak için çok kullanılır. Bir örnek verecek olursak büyük DC motorlarda mesela trenlerde, motor hız kontrolü olarak SCR'li devreler kullanılır.
Aşağıdaki şekilde tam ON olmuş yani tamamen iletime geçmiş bir SCR üzerinden geçen akım dalga şekli görülmektedir.


t106.gif




Bir SCR yi iletime geçiren akım yaklaşık hep aynıdır. Tabi ki SCR'nin modeline bağlı olarak değişiklik olur. Fakat aynı SCR için, SCR yi iletime geçiren akım aynıdır. Şimdi bu özelliği göz önüne alarak bir SCR üzerinden geçen akımı değiştirelim! Aslında akımı değiştirmeyeceğiz. SCR yi devreye uygulanan AC voltajın değişik faz derecelerinde ateşleyelim.


t107.gif



t108.gif



Yukarıdaki devrede girişe uygulanan AC voltaj sıfırdan başlayarak maksimum değerine kadar bir zaman içinde yükselecektir. Bu yükseliş sırasında SCR'nin kapısına bağlı R potansiyometresini üzerinden bir akım akıtmaya çalışacaktır. Giriş voltajı belli bir seviyeye geldiğinde kapı üzerinden akan akım SCR yi ateşleyerek ON durumuna getirecektir. SCR bir kere ON olduktan sonra ancak anodu ile katodu arasında ki voltaj "tutma voltajının altına" yaklaşık sıfır volta düşene kadar ON olarak kalacaktır. Giriş voltajı bir önceki voltaj seviyesine kadar tekrar yükselene kadar da OFF olarak kalacaktır. Şimdi potansiyometreyi biraz açalım yani direncini düşürelim. Bu sefer giriş voltajı daha erken zamanda SCR'nin kapısından yeterli akım geçirerek SCR'yi ON yapacaktır. Potansiyometreyi kısarsak yani direncini arttırırsak bu kez de giriş voltajının daha yüksek seviyelerinde yeterli kapı akımı oluşacak ve SCR daha geç ON olacaktır. Anlaşılacağı gibi potansiyometreyi açarak SCR üzerinden daha fazla, potansiyometreyi kısarak daha az akım!! geçiriyoruz.


t109.gif



Şimdi neden " akım! " yazdım. Dalga şekillerine dikkat ederseniz aslında akımın büyüklüğü değişmiyor. Sizin daha basit anlamanız için "akım" sözcüğünü kullandım. Değişen akımın akma zamanı. Potansiyometrenin açılıp kısılması ile bir zaman aralığı içinde SCR üzerinden geçen akımın süresini değiştiriyoruz. Aslında bu yeterli sonucu sağlar. Çünkü sonuç olarak bizim yük üzerinde harcadığımız güç önemlidir. Yük üzerinden küçük sinüs parçaları halinde akım geçirirsek az güç harcarız, yada büyük sinüs parçaları halinde akım geçirirsek çok güç harcarız.
Bu şekilde faz kontrolünü sinüs içiminde bir dalga şekli için 0-90 dereceler arası yapmak mümkündür. Çünkü giriş dalga şekli 90 dereceye eriştiğinde zaten olabilecek maksimum giriş voltajına erişilmiş ve SCR ateşlenmiş olacaktır. Eğer 900 den daha yüksek açılarda ateşleme gerekiyorsa aşağıdaki şekilde görüldüğü gibi devreye bir C kondansatörü ilave edilir. Potansiyometre (R) ile C nin oluşturduğu sabit gecikme süresi kadar bir gecikme, C kondansatörü olmadan olacak ateşleme süresinin üzerine ilave edilir.


t110.gif




SCR ile yapılan çeşitli uygulamalarda farlı bağlantılar ve tetik devreleri kullanılır. Bu tamamen amaca bağlı olup, dalga şekillerinde farklılıkları açıkca görülmektedir.


t112.gif


t112.gif


Günümüz UPS lerinde (Kesintisiz Güç Kaynakları) çıkış devrelerinde SCR kullanılır. Bunun nedeni büyük güç altına çalışan bu devrelerin verimlerinin yükseltilmesi ve üzerlerine daha az güç harcamalarını sağlamaktır. Aşağıdaki şekilde bir UPS nin invereter adı verilen basitleştirilmiş çıkış katı görülmektedir.

t114.gif


Sürekli tekrar ettiğim önemli bir konuyu tekrarlayacağım. Unutmayalım ki bir thyristörler bir kere ON olduktan sonra anod - katot arası voltaj 0V olmadan OFF olmaz. Bu nedenle thyristörlerin DC ile çalışmasında, OFF konumunun sağlanması için bir takım özel devrelere ihtiyaç duyulur. Bu devrelere komütasyon devreleri denmekte idi.
Yukarda ki devrede SCR1' in kapısına pozitif bir pals uygulayalım. Bu durumda SCR1 iletime geçer ve o durumda kalır. Akım, L bobininden trafonun n1 sargısından ve SCR1 üzerinden geçecektir. SCR1 ateşlendiğinde, SCR1' in anodu arasındaki voltaj farkı kalmaz. C kondansatörünün üst ucu negatif yada toprak voltajına iner. C kondansatörünün alt ucu ise kaynak voltajına eşit olur. www.diyot.net
Tetikleme palsı istediğimiz çıkış dalgasının periyodunun yarı zamanında SCR2 uygulanın. Bu durumda SCR1 zaten ON durumda idi. SCR2 ON olunca üst ucu negatif alt ucu pozitif olan C kondansatörü ikisi de ON olan SCR1 ve SCR2 üzerinden boşalır. Şimdi bu duruma dikkat edelim. C kondansatörünün boşalması anında SCR2' nin anodu kondansatör üzerindeki yük nedeniyle pozitif, buna bağlı olarak SCR2 üzerinden geçen akım doğru yönde olacaktır. Aynı anda SCR1' in anodu C kondansatörü üzerindeki yük nedeniyle negatiftir. Bundan dolayı SCR1 üzerinden katotdan anoda doğru ters yönde bir akım akacaktır. Bu ters akım SCR1' i OFF yapacaktır. SCR1 OFF olduğu zaman C kondansatör üzerindeki gerilim bu kez ters yönde yani -2E olarak görünür. Tekrar yarım periyot süresinde bu kez SCR1 tetiklenir ve SCR2 OFF olur ve bu şekilde devam eder. Devredeki L bobinin amacı C kondansatörünün boşalma hızını kontrol eder.
SCR ler DC ve AC motorlarda güç kontrolü yaparak hız değişiklikleri yapabilir. Örneğin bazı el tipi elektrikli matkapların tetiklerine basarak hızlarının değiştirilebilme özellikleri gibi. www.diyot.net
Aşağıdaki şekil tipik bir DC motor hız kontrol devresi görülmektedir.



t115.gif



Girişteki devre köprü tipi bir doğrultucudur. Devrede dikkatimizi çeken bir nokta devredeki SCR' nin her ateşlemeden sonra kendiliğinden sönmesini sağlamak için doğrultucu çıkışında herhangi bir süzgeç kondansatör kullanılmamasıdır. Şekildeki R2 direnci hız kontrolü için kullanılır. L bobini oluşacak parazitik gürültüleri önlemek, D diyodu ise bu diyot üzerinde oluşan ters yöndeki gerilimleri kendi üzerinde kısa devre etmek için kullanılır.
 
Durum
Üzgünüz bu konu cevaplar için kapatılmıştır...

Forum istatistikleri

Konular
128,182
Mesajlar
915,684
Kullanıcılar
449,953
Son üye
bavenes

Yeni konular

Geri
Üst