Topraklama Hakkında Herşey Burada [Linkler Yenilendi]

Klavyeah

Üye
Katılım
28 Ağu 2006
Mesajlar
269
Puanları
1
Yaş
39
Topraklamanın önemi


ALçAK GERiLiM SiSTEMLERiNDE iZOLASYON HATASINA KARşI TOPRAKLAMA SiSTEMLERi

izolasyon hatalarına bağlı tehlikeler

Meydana gelen hatanın sebebine bakılmaksızın bir izolasyon hatası

• insan hayatı
• Malzemenin korunması
• Elektrik gücünün kullanımının devamı açısından tehlikeli olmaktadır.
Alçak gerilim sistemlerinde en az 5 saniye için maksimum kabul edilebilen temas gerilimi UL ;IEC 60479 belirlenmiştir.

1. Bölge :hissetme 2.Bölge: Rahatsızlıklar görülür
3. Bölge: Kaslarda titreşim 4. Bölge: Kalpte fibrilasyon riski
şekil 1: IEC 60479-1 e göre AC akım etkileri

şekil 2: IEC 60364 e göre temas geriliminin maksimum süresi

2. insan Hayatının Korunması ve Topraklama sistemleri

Topraklama sistemleri 2 harf kullanılarak ifade edilir.

• Birincisi transformatorun nötr bağlantısı şeklini ifade eder
1. T Nötr noktası topraga bağlı
2. I Nötrü izole
• ikincisi cihazın gövde topraklama şeklini ifade eder.
1. T Doğrudan toprağa bağlı
2. N Nötr üzerinden bağlı


Bu iki harfin kombinasyonu üç konfigürasyonda verilir.

• TT Transformatorun nötrü topraklı ve cihaz gövdesi topraklı
• TN Transformatorun nötrü topraklı ve cihazın gövdesi nötre bağlı
• IT Transformatorun nötrü topraksız va cihazın gövdesi topraklı

IEC 60364 egöre TN sistemler birkaç alt sisteme ayrılır.

• TN-C N ve PE nötr iletkenleri bir ve aynıdır.
• TN-S N ve PE nötr iletkenleri ayrıdır
• TN-C-S TN-C den sorakı kısmı TN-S dir.
iletken kesitler 10 mm2 ye eşit veya düşük olan şebekelerde TN-S sistem kullanmak mecburidir.

şekil 5 Şebeke de nötr ve cihaz gövdeleri bağlantı şekillleri.

Her bir topraklama sistemi tüm tesis boyunca aynı olmalıdır. Bir tesiste iki ayrı uygulamaya müsaade edilmez.


önizleme olarak verdim devamı ve resimleri linkte
 

Ekli dosyalar

  • topraklamanin___onemiii.zip
    374.2 KB · Görüntüleme: 4
Elektrik tesisatlarında seçilecek kablo kesiti genellikle kullanılacak güce göre çekilecek akımın hesaplanması ile belirlenmelidir.
İyi bir topraklama değeri sıfıra ohm'a yakın olan değerdir. Fakat her işte olduğu topraklamadada maliyetler önemli, onun için iyi bir topraklama değeri izin verilen değerler içinde olandır.
Temel Topraklama


BİNA TEMEL TOPRAKLAMASI

BİNA TEMEL TOPRAKLAMASI

Temel topraklama, son yayınlanan Topraklama Yönetmeliği'nde yer alan ve yapılarda es-potansiyellemeyi mümkün olduğu kadar iyileştirmeyi sağlayan bir uygulamadır.

Yapı temeli oluşturulurken, temel içindeki iletken kısımların elektriksel olarak sürekliliğinin gerçekleştirilmesi, bir yandan es-potansiyellemeyi sağlarken, diğer yandan da, topraklama direnci olarak ölçüldüğünde uygun değer verirse, TT şebeke için koruma topraklaması, TN şebeke için ise işletme topraklamasını sağlar.

Bütün bu anlatılanlar, yapı temeli izole edilip bohçalanmamış olduğu taktirde geçerlidir. Yapı temeli izole bohça içinde ise, yapılacak uygulama, potansiyel dengeleme ve düzenleme kurallarına göre bohçalanmamış temelin altına ağ şeklinde uygun dirençli topraklama tesisi yapmak ve bunu toprak içinden sürdürüp izolasyonun sona erdiği seviyede es-potansiyellenmis betonarme demirleri ve iletken kısımlarla irtibatlandirmaktir.

Bu iki tip topraklama uygulaması için, iletken seçiminde dikkate alınacak hususlar şunlardır:
Yönetmelikte galvanizli şerit önerilmektedir. Gerçekten de betonarme, demir ile ayni esaslı malzeme olduğundan, korozyon riski taşımaz ve dolayısıyla en uygun malzemedir. Öte yandan, ülkemizdeki galvanizli şeritler 4 ilâ 6 m civarında boylarda olup, ancak özel siparişlerle 20 ilâ 30 m'lik boylarda da üretilmektedir. Boy kısaldıkça ek malzemesi daha fazla gerekmekte, bu da tesisatın yapımında isçilik ve malzeme fiyatlarında artışa sebep olmaktadır. Ayrıca, çok ek, çok problem demektir ve isin kalitesini düşüren bir etken olarak karsımıza çıkar.

Diğer bir gerçek de, piyasadaki galvanizli çeliklerin Avrupa'daki kalitede olmamasıdır. Genelde çeşitli hurda malzemeden haddelenen çelik şeritler, üzerlerine yapılan çinko kaplamayı tam kabullenmemekte, çok küçük bükümlerde bile kırılmakta veya üzerindeki kaplama kalkmaktadır.

Ancak temel topraklama hâlâ tam anlaşılmamakta, kimileri sadece betonarme demirlerinin topraklama elektrodu olarak kullanılmasının ve elektriksel olarak birleştirilmesinin yeterli olacağını sanmaktadır. Halbuki temel topraklaması yeterli değil, gerekli bir koşuldur. Dolayısıyla ilâve topraklama gerekebilir.

Topraklama tesisatının direnci yeteri kadar küçük değilse, betonarmeden toprağa çıkan iletkenler ile temel etrafında toprak içine yapılacak ek topraklama birleştirilerek uygun direnç sağlanmalıdır.

Uygulamacılar, yürürlükte olan Topraklama Yönetmeliği’ni daha iyi değerlendirilmeli, kaliteli, kalıcı ve esnek çözümler üretmelidir. Unutulmamalıdır ki, topraklama bir kez yapılacak ve geri dönüsü çok verimsiz olan bir uygulamadır. Mal ve can güvenliği açısından bu kadar önem taşıyan bir konuda, ucuz ve basit çözümlerden kaçınmalıyız.

iletken seçiminde toprak içi korozyon şartlarının beton içinden daha ağır olduğu düşünülmeli ve ilerde bir problem durumunda temel altına veya yapı çevresine bir daha dönülemeyeceği unutulmamalıdır. Bu uyarıyı dikkate alarak, toprak içinde bakir iletken kullanmak en iyi çözüm gözükmektedir. Galvanizli çelik şerit iletkenler de topraklama elektrodu olarak kullanılabilir. Ancak ek ve malzeme kalitesinden hiç taviz verilmemelidir.


devamı ve resimleri linkte
 

Ekli dosyalar

  • temeltopraklama.zip
    38.2 KB · Görüntüleme: 3
Orta Gerilim Topraklaması


O.G. DAğITIM şEBEKELERiNDE FAZ-TOPRAK ve FAZ-FAZ KISADEVRE AKIMLARININ SINIRLANDIRILMASI – NöTR TOPRAKLAMASI

GiRiş :
O.G. (Orta gerilim)(7,2-36 kV) dağıtım şebekelerinde faz-toprak ve faz-faz arıza akımlarını önceden belirlenen seviyeye düşürmek için çeşitli yollar mevcuttur. Faz-faz kısadevre akımlarını sınırlandırmak genellikle besleme hatlarına seri bağlanan bobinlerle (seri reaktörler) gerçekleşir. O.G. şebekelerindeki arızaların yüzde 70-80’ i faz-toprak arası şeklinde olduğundan, bu yazıda faz-toprak arızalarının sınırlandırma metotları ve tercih yolları ile ülkemizde TEiAş’ ın bu konudaki prensip ve kararları incelenecek ve uygulamada karşılaşılan güçlükler ele alınacaktır. Ancak arıza akımlarının hesaplanmasına, kapasitif akımların kompanzesine temas edilmeyecektir. Faz-faz kısadevre akımlarının sınırlanması başka bir yazıda incelenecektir.

NöTR TOPRAKLAMASI :
Nötr noktasını toprağa bağlamadan yapılacak dağıtım şebekelerinde, faz-toprak arızalarını birkaç saat bekletmek mümkündür. Böylece faz-toprak arızası oluştuğunda panik söz konusu olmaz. Buna mukabil, arızasız diğer iki fazın toprağa göre voltajı %73 kadar yükselebilir, faz-toprak akımları birkaç Amperlik kapasitif akımlar olacağından, bunları algılamak çok zordur, izolasyon malzemesi arıza süresince %73 kadar aşırı zorlanabilir, iki faz-toprak şekline dönüşme ihtimali vardır.Arkın kendiliğinden sönmesi genellikle mümkündür.(şekil 1)

Yukarıda belirtilen mahsurlardan dolayı bugün genellikle nötr noktaları direkt veya bir direnç (veya reaktans) üzerinden topraklanmaktadır. TEiAş’ ın 14.02.1992 tarihli kararı ile Türkiye O.G. şebekesindeki tüm voltaj kademelerinde faz-toprak arıza akımlarının 1000 Amper’ de sınırlandırması için uygun değerde bir direnç üzerinden ayırıcısız olarak toprak şebekesine bağlanması kayıt altına alınmıştır.
Hatta nötr noktası dışarıda olmayan veya üçgen sargılı transformatörlerle bile, topraklama trafosu üzerinden yapay nötr noktası oluşturularak nötr topraklı sisteme dönüştürülmektedir. (şekil 2)

NöTR TOPRAKLAMA çEşiTLERiNiN MUKAYESESi :

1. DiREKT TOPRAKLAMA :
Nötr noktası, 1 ohm’ dan küçük topraklama şebekesine bir iletkenle bağlanır, ancak arıza akımlarını sınırlamak mümkün olmaz, buna mukabil arızasız fazlarda gerilim yükselmesi söz konusu olmaz, arıza akımını algılamak kolaydır. Kesiciler, akım trafoları, transformatörler zorlanır. Arkın kendiliğinden sönmesi beklenemez. (şekil 3)


devamı ve resimleri linkte


Lütfen Emege Saygı
 

Ekli dosyalar

  • og___topraklama.zip
    39.8 KB · Görüntüleme: 1
TOPRAKLAMA

Toprak sonsuz büyüklükte iletken bir kitledir ve bütün elektrik tesislerinin bulunduğu binaları veya açık hava tesislerini sinesinde taşır. Arızasız bir şebeke işletmesinde toprak üzerinden önemsiz derecede küçük akımlar geçerler. Eğer elektrik tesislerinde bir motor isteyerek veya bir hata sonucunda toprak bir iletkenin bağlantı haline gelirse tesisin bu noktası ile toprak aynı potansiyeli alırlar. Bundan başka simetrik olmayan şebeke hatalarında toprak üzerinden büyük akımların geçmesi beklenebilir. Topraktan geçen akımın bir kısmı arıza yerinde bulanan bir kimsenin üzerinden geçerse , bunun hayatı tehlikeye girebilir. Topraktan geçen kaçak akımlar ayrıca yangına da sebep olabilirler. Toprağın kendi direnci ,0,05 ohm\km gibi gayet küçük bir değerdedir. Fakat toprak üzerinden geçen akımın değerini tayin eden devre direnci, toprak ile temas haline gelen noktalardaki geçiş veya yayılma direncidir. Bazı hallerde bu temas , bir izolasyon hatası sonucunda tesadüfi olarak meydana gelir.Bazı hallerde ise, özel olarak toprağa yerleştirilen bir topraklayıcı elektrot üzerinden toprak ile temas sağlanır: buna topraklama denir.bunlarda aranan en önemli özellik , toprak geçiş ( veya yayılma) direncinin mümkün olduğu kadar küçük olmasıdır.Toprak üzerinden geçen hata akımın değeri , ayrıca şebekenin yıldız noktasının durumuna bağlıdır.Mesela yıldız noktası yalıtılmış şebekelerde bir toprak teması halinde , şebekenin cinsine ve büyüklüğüne bağlı olarak 50-100 A mertebesinde bir kapasitif akım geçer.Toprak teması akımı , yıldız noktasına bağlı bir petersen bobini üzerinden yaklaşık olarak 5-10 A gibi bir aktif artık akım geçer.Yıldız noktası direkt topraklanmış bir şebekede ise bir toprak kısa devresi akımı 1kA kadardır. Elektrik şebekelerinde topraklama tesisleri , bir arıza halinde kısa devre akımlarının insan hayatını tehlikeye sokmayacak yoldan geçmelerini sağlar. Bu bakımdan ,güvenilir bir topraklamanın elde edilmesi için bunun iyi hesaplanması ve şartlara uygun bir şekilde tesis edilmesi gerekir. Topraklamanın hesaplanmasında , tesisin geriliminden ziyade toprak hatalarında geçen akımlar rol oynarlar.Topraklama tesisinin hesaplanmasında şu işlemlerin yapılmaları gerekir:

1) Muhtemel olan en büyük hata akımının hesaplanması,
2) En büyük toprak akımının tayini,
3) Yayılma direncinin hesaplanması,
4) Topraklayıcı geriliminin tayini
5) Temas ve adım gerilimlerinin bulunması.
 

Ekli dosyalar

  • Topraklama_Cesitleri.zip
    51.9 KB · Görüntüleme: 2
Topraklama tesislerinde büyük hayati önemi haiz olan temas ve adım gerilimleri , üç boyutlu bir akım alanının kısımları olduklarından , bir topraklama tesisinin hesaplanması , elektro tekniğin zor problemleri arsındadır. Ayrıca toprağın özgül direncinin tayinindeki güvensizlik yüzünden , yapılan hesaplar sonucun da güvenilir değerlerin bulunması mümkün olmaz.
Aşağıda açıklanacağı gibi , tesislerde kullanılan en önemli topraklamalar.

-koruma topraklaması,
-işletme topraklaması ve
-yıldırım topraklamasıdır.

Koruma Topraklaması
Yüksek gerilim tesislerinde insanları yüksek temas gerilimine karşı korumak için bir koruma topraklaması yapılır. Bunun için işletme akım devresine ait olmayan , fakat bir hata halinde gerilim altında kalabilen ve insanların temas edebilecekleri bütün cihazların ve tesis elemanlarının madeni kısımları , topraklama iletkeni üzerinden bir topraklayıcıya bağlanırlar.
Alçak gerilim tesislerinde temas gerilimine karşı koruma sağlamak için uygulanan çeşitli metotlar arasında koruma topraklaması da vardır:fakat bunun çok iyi bir metot olmadığı ve çeşitli sakıncalarının olduğu açıklanmıştır. Buna karşılık yüksek gerilim tesislerinde tehlikeli temas ve adım gerilimlerine karşı koruma sağlamak için yegana koruma metodu koruma topraklamasıdır. Koruma topraklaması tesisin boyutlandırılması bakımından ana kriter ’’ temas gerilimi’’ olduğundan Alman VDE yönetmeliklerine göre topraklama tesisleri o şekilde yapılmış olmalıdır ki,

1-) Yıldız noktası yatılmış veya kompanzasyon bobini üzerinden topraklanmış şebekelerde temel gerilimi 65 V’un üstüne çıkmamalıdır.
2-) Yıldız noktası sürekli veya geçici olarak küçük değerli bir direnç üzerinden topraklanan şebekelerde temas gerilimi şekilde verilen eğrideki değerlerin üzerine çıkmamalıdır.
Bu eğrinin her noktası için elektrik miktarının Q= 70mAs değerini aşmaması şartı yerine getirilmiştir. Zira , yapılan araştırmalara göre , ölümle sonuçlanan elektrik kazalarında bu elektrik miktarı tespit edilmediğinden , bu değer bir kriter olarak geçerlidir. Burada vücut direnci için en düşük değer olarak 1000ohm kabul edilmiştir.

işletme Topraklaması Elektrik tesislerinde işletme akım devresine ait bir noktanın topraklanmasına işletme topraklaması denir:cihazların ve tesislerin normal işletmeleri için bu topraklama gerekir. işletme topraklaması iki cinstir. Direkt Topraklama
Bu durumda topraklama üzerinde topraklama empedansından başka hiç bir direnç bulunmaz. Mesela şebekenin yıldız noktasının direkt topraklanması , bu cins topraklamadır.
Endirekt Topraklama
Bu durumda topraklama , ilave bir ohmik , endüktif ve kapasitif direnç üzerinden yapılır. işletme topraklaması , işletme akım devresinin toprağa karşı potansiyelinin belirli bir değerde bulundurulmasını sağlar.
Koruma topraklaması üzerinden yalnız bir hata halinde bir akım geçtiği halde , işletme topraklaması üzerinden arızasız durumda dahi bir akım geçebilir.Hem alçak gerilim ve hem de yüksek derilim tesislerinde yıldız noktasının topraklaması , bir işletme topraklanmasıdır. işletme topraklaması , fonksiyon bakımından koruma topraklaması ile yakından ilgilidir. Mesela bir fazlı toprak temasında hata akımı , devresini işletme topraklaması üzerinden tamamlayarak arıza , bir fazlı kısa devreye dönüşmektedir. Alçak gerilim tesislerini besleyen akım kaynaklarının yıldız noktaları genellikle bir işletme topraklaması üzerinden topraklanır. Bunun toplam direncinin Ro küçük veya =2ohm olması arzu edilir.Zira bir faz toprak kısa devresinde Ro direnci üzerinden koruma hattının ve buna bağlı cisimlerin toprağa karşı gerilimi yükselir.Topraklama ve yıldırımdan korunmak için alınan önlemler genel olarak TV verici ve aktarıcı istasyonlarının tesisi sırasında ikinci derece de önemsenen hususlar içinde yer alır. Ancak, istasyonların bulunduğu coğrafik koşullar ve enerji şartları nedeniyle topraklama hatasından ve yıldırımdan meydana gelen etkiler milyarlarca değerindeki tesis ve cihazlara büyük zararlar verir. Yaptığı tahribatın büyüklüğü ile doğru orantılı uzun süreli yayın kesintilerine maruz kalınır.
Yıldırım Topraklaması
Elektrik tesislerinde yıldırıma karşı korumak için , parafudurların topraklama uçları ile açık hava tesislerinde yıldırımın düşmesi ihtimali olan bütün madeni kısımlar,mesela hava hatlarının koruma iletkenleri ,madeni veya beton direkler özel bir topraklayıcı üzerinden topraklanır:buna yıldırım topraklaması adı verilir.Yıldırım topraklaması da bir nevi koruma topraklamasıdır ve onun için iki topraklama biri birine bağlanır.Yıldırım topraklamasının amacı ,her elektrik tesislerine düşen bir yıldırım düşmesinin sebep olduğu aşırı gerilim gerilim dalgasının isletme araçlarına zarar vermeden toprağa iletilmesi ve hem de binalara düşen yıldırımın,insan hayatına zarar vermeden ve bir yangına sebep olmadan toprağa atılarak zararsız hale getirilmesidir.
Tarih boyunca yıldırımdan anlaşıldığı kadarıyla, yıldırımdan korunma sistemleri de o oranda gelişmiştir. Yıldırım üzerine ilk teoriler 17. Yüzyılda tespit edilmeye başlanmıştır. Descartes adındaki bilim adamı bulutların çarpışmasından sıkışan havanın ışık ve ısı etkisi meydana getirdiğini ve ısının gürültüye neden olduğunu söyleyerek yıldırımla ilgili ilk teoriyi ortaya atmıştır. 18. Yüzyılın ortalarında Rahip Nollet Denel fizik dersleri adlı kitabında elektrikle yıldırımın ilgisini anlatmıştır. Bu tarihten sonra fizikçi Jallbert, yıldırım olayı ile sivri uçların ilgisini dile getirmiştir. Yine aynı yıllarda Romans, yıldırım olayının bir elektriksel olay olduğunu söyleyerek yıldırım olayında elektrikten bahsediyordu.Franklın 1725 yılında balon deneyi yaparak bulutların elektrik yüklü olduğunu ispatlamıştır. Daha sonra yıldırım konusundaki gelişmeler 1929 yılında ingiliz doktor Simson ve Fransız Mathias tarafından yapılan açıklamalarla devam etmiştir. Yıldırımın meydana gelişimi yapılan gözlemler ve incelemeler sonunda dört şekilde olduğunu ortaya koymaktadır.

(-) inişli
(-) çıkışlı
(+) inişli
(+) çıkışlı


Bunlardan en fazla görüleni (-) inişli olanıdır.


https://www.kontrolkalemi.com/forum/attachments/topraklama_cesitleri-zip.47787/
 
Yıldırım, bulut ile yer arasındaki elektrik yüklerinin hızlı deşarj olma olayıdır.
Havada asılı bulunan elektrik yüklü bulutlarda hava iyi bir iletken olmadığı için yaklaşık 10 milyon voltluk gerilim oluşturur. Bu bulutların şarj olması anında fırtına bulutunun tabanı yere yakın olan kısmı negatif yükle yüklenir. Bu arada yer pozitif yükle yüklenir. Bazı durumlarda bunun terside mümkündür. Sonuç olarak yüklenme işlemi bulut boyutunda yerde de oluşur.
Fırtınanın artmasıyla bulutlardaki negatif ve yerdeki pozitif yük ayrışması devam eder. Fırtına şiddetlendikçe bulutla yer arasında bulunan yalıtkan hava iletken hale geçmeye başlar ve bulutla yer arasındaki potansiyel farkı da arttıkça havayı delmesi kolaylaşır. Havanın delinmesiyle buluttaki yüksek voltaj toprağa deşarj olur. Bu deşarjlarda 2000 ile 200 000 amper arası akım akmaktadır. Atmosferik olaylarda bulutla bulut arasında voltaj boşalmasına şimşek, bulutla yer arasındaki voltaj boşalmasına yıldırım denilir.
Yıldırımın oluşması, bir bulutun alt kısmındaki enerjinin yeterli seviyeye geldiği zaman (10kv/cm2) toprağa doğru bir elektron demeti olarak harekete geçmesidir. Birinci demet 10 ile 50 metrelik mesafeyi 60 – 50 000 km/sn arasındaki hızla kat eder. 30 ile 100 mikron saniye süren bir aradan sonra ikinci bir deşarj birinci deşarjın yolunu izler ve birinciden 30 ile 50 metre arası daha ileri gider. Daha sonra üçüncü deşarj ardından dördüncü deşarj meydana gelir. Her bir deşarj öncekinden 30 ile 50 metre ileri giderek şimşeğin ucunun yeryüzüne yaklaşmasını sağlar. Bu arada yeryüzü ile bulut arasındaki potansiyel farkı gittikçe artar ve havanın delinmesi sonunda yeryüzünde bulunana sivri bir uç, bina, ağaç veya kule gibi bir noktaya pozitif yüklü bir demet deşarj olur ve bunun boyu 150 metreyi geçebilir. Bu deşarj esnasında 200 000 Ampere kadar çıkan akım 100 milyon voltluk bir gerilim ile toprağa akar. Bu akıma deşarj akımı denilir. Bu akım saniyenin milyonda biri mertebesinde aralıklarla art arda gerçekleşmesiyle tamamlanır.
Elektrostatik yük; Elektrik yüklü bulutun altında kalan yer yüzünün üstündeki tüm teçhizatlar elektrostatik alana maruz kalırlar. Bu elektrostatik alan yer küreden yüksekliğe bağlı olarak değişmektedir. örneğin topraktan 10 m yükseklikte bulunan EN Hattı fırtına sırasında toprağa göre 100 ile 300 KV arası fazla gerilime sahip olur. Deşarj esnasında bu yükün toprağa akması gerekmektedir.
Toprak akımı; Yıldırımın hemen ardından yıldırım akımı sonucu toprak akımları oluşur. Bulutun kapsadığı toprak alanından yıldırımın düştüğü noktaya doğru akım akamaya başlar. Bu bölgede bulunan herhangi bir iletken bu akım için topraktan daha kolay iletim sağladığından akım bu iletkenden geçmeye başlar ve bu akıma toprak akımı denilir. Bu boşalma işlemi çok hızlı olduğundan (20 mikro saniye) bu metaller üzerinde indüklenen gerilimler çok yüksek olmaktadır.

Yıldırımdan korunma dört ayrı şekilde yapılmaktadır.
1. Franklın çubuk paratoneri ile korunma; Bu tür korunma sisteminde aşağıdaki malzemeler kullanılmaktadır.
• Yakalama çubuğu,
• iniş iletkeni,
• Topraklama tesisatı,
2. Faraday kafesi ile koruma; Bu tür koruma sisteminde de Franklın çubuk sistemindeki gibi sistemler kullanılmaktadır.
3. Radyoaktif paratoner ile korunma;
• Radyoaktif paratoner ünitesi,
• Radyoaktif paratoner iniş iletkeni,
• Radyoaktif paratoner topraklama tesisatı, sistemleri kullanılmaktadır.
4. Yıldırımın düşmesini engellemek.
Franklın çubuklu paratonerle koruma;
Bu tür korumada sivri ucun oluşturduğu yakalama metodu kullanılır. Sivri uç, iniş iletkeni ile topraklama levhasına en kısa ve düz olarak indirerek irtibatlandırır.
Franklın yakalama ucu; çelik uçlu krom nikel kaplı ve pirinç üstü krom nikel kaplı olarak üretilmektedir. Zamanla havadaki atmosferik olaylardan etkilenmemesi için bunlardan pirinç olanı tercih edilmelidir. Franklın çubukları 20,40,50,60cm lik boylarda üretilmektedirler.
iniş iletkeni; Radyoaktif paratoner ve Franklın çubuklu paratonerlerde iniş iletkenleri aynıdır. Yıldırımın oluşturduğu yüksek amperli (200 000 A)akımın akması halinde iletken teline herhangi bir zarara uğramaması gerekmektedir. iniş iletkeni ile paratonerle topraklama arasını en kısa yoldan birbirine irtibatlandırmak gerekmektedir.
iniş iletkenleri 50mm2 som bakır ve döşeneceği zeminden 5cm açıkta olacak şekilde olmalıdır. Bakır iletkende ek yapmak gerekirse ekleri gümüş veya termo kaynağı ile yapmak gerekmektedir. iniş iletkeni mümkün olduğu kadar en kısa yoldan ve 90 dereceden büyük kavislerin olmamasına dikkat edilerek çekilmektedir. Ayrıca bir metre mesafe içinde iki veya daha fazla köşelerin olmamasına dikkat edilmelidir.
Topraklama tesisatı; Franklın çubuklu paratoner. Faraday kafesli koruma ve radyoaktif paratoner de topraklama tesisatı aynı kullanılmaktadır. Topraklama tesisatı çubuk veya düz levha bakırdan yapılmaktadır. Topraklama direnci maksimum 5 ohm olmalıdır. Topraklama direnci 5 ohmdan büyük olursa sisteme topraklama çubuğu veya levhası eklenerek direncin limitler içinde olması sağlanır. Topraklama çubukları veya levhalarının gömüleceği toprağın dünyanın toprağı ile bağlantısı olması gerekmektedir. iniş iletkeni topraklama çubuklarına gümüş kaynağı ile yapılmalıdır. Ayrıca çubuk sayısı birden fazla ise çubuklar arasındaki mesafelerin 5m den daha az olmamasına ve aradaki bağlantı iletkeninin 50mm2 saf bakırdan olmasına dikkat edilmelidir.
Bu koruma tipi radyoaktif paratonerlerden önce kullanılmakta ise de yüksek yerlerdeki istasyon veya yerleşim yerlerinde radyoaktif paratonerle birlikte kullanılmaktadır. Faraday kafesli korumda istasyon binasının çatısının üzerine ve istasyonun kulesine muhtelif aralıklarla franklın çubukları cerleştirilerek iniş iletkenleri ile topraklama çubuklarına irtibatlandırılır. şekil 1 de görüldüğü gibi.
Yakalama uçları; Yakalama uçları olarak franklın çubukları kullanılmaktadır. Binanın çatısına bu çubuklar dik olarak çatıyı kaplayacak şekilde aralıklarla dik olarak yerleştirilir ve topraklama iletkenleri ile birbirlerine irtibatlandırılırlar.
iniş tesisatı; Dik olarak binanın çatısına yerleştirilen franklın çubukları 50mm2 lik saf bakırla ve tüm binayı kafes gibi saracak şekilde üstten, yanlardan ve toprak altından saracak şekilde tesis edilmelidir. Bakır iletkenler kroşelerle döşenmeli ve hiçbir noktadan binaya değmemelidir.


https://www.kontrolkalemi.com/forum/attachments/topraklama_cesitleri-zip.47787/
 
Radyoaktif paratoner koruma yapacağı alanın en yüksek ve orta yerine konmalıdır. Ayrıca en yüksek noktadan 1.5m yükseğe tesis edilmelidir. Topraklama kazıklarının birbirine olan mesafeleri boylarının 1.5 katından daha küçük olmamalıdır çünkü çubuklar boyları kadar küresel bir alanda toprağa deşarj yapmaktadırlar.

Yıldırımın düşmesini engellemek;
Geleneksel yıldırımdan korunma metotlarının yeterli olmadığı TV ve radyo verici tesislerinde daha kompleks bir koruma gerekmektedir. özellikle yüksek yapıların ve kulelerin yıldırımı daha çok çektiği düşünüldüğünde ,bu tür bina ve kuleler normalde düşmeyecek olan yıldırımları tetikleyerek düşmesine neden olurlar. Dağlık bölgelerdeki kuleler ve binalar yıldırımı daha fazla çekerler. Yıldırım bulutlardaki yüksek potansiyellin toprağa boşalması işlemidir. Bu işlemin yavaş, yavaş ve sürekli olarak yapılması halinde bulutlardaki potansiyel azalacağından o bölgeye yıldırımın düşmesi engellenmiş olacaktır.
Enerji nakil hatlarının yıldırımdan korunması;

E.N.Hattının enerji taşıyan tellerinin ve direklerin tepesinden geçecek şekilde yıldırımdan koruma iletkeni olmalıdır.
E.N Hattındaki direklerden birine yıldırım düştüğünde direğin ortalama direncinin 50 ohm olduğunu varsayarsak direk üzerinde düşen gerilim yaklaşık olarak 800 KV olur. Direk üzerinde oluşan bu gerilimden faz hattına izolatörlerden atlama meydana gelir. Atlayan bu gerilimde enerjinin beslediği sistemlere zarar verir. Buradan da anlaşılacağı gibi E.N. Hattının topraklamalarının iyi yapılarak topraklama direncinin küçük olması sağlanmalıdır. Bu direncin maksimum 10 ohm olması gerekir. E.N. Hatları direklerinin topraklama dirençlerinin 10 ohm olması durumunda direk üzerinde oluşabilecek yaklaşık gerilim 475 KV mertebesindedir.
E.N.Hatlarında genel olarak yıldırıma karşı koruyucu olarak iki yöntem uygulanır.
Paralel koruyucu yöntemi; Bu yöntemde faz ile toprak arasına yüksek gerilimi kısa devre yapacak malzemeler konulur. Bunlar paralel bağlanmış gaz tüplerinden, metal oksit varistörlerden oluşmaktadırlar. Bu tür koruma yöntemiyle yüzde yüzlük koruma sağlanamamaktadır, ancak bunların hatlara tesis edilmesi kolay olduğundan ve fiyatlarının ucuz olması nedeniyle sık olarak kullanılmaktadır.
Seri koruyucu yöntemi; Koruyucu malzeme faz iletkenine seri olarak bağlanır. Malzemenin içinde yıldırım enerjisini sınırlayan devre elamanları mevcuttur. Enerji hattına seri 1mhz e yüksek empedans gösterecek bir bobin bağlanır. Yıldırım bu bobinden geçemeyerek toprağa kısa devre edilir. Yıldırımın bobin den geçen kısımları da faz hatlarına bağlanan gerilim sınırlayıcı kontaktörlerle sistemlere ulaşması engellenmiş olur.
Kritik açıklık; Yıldırımdan korunma tesisatlarında fazla dikkat edilmeyen hususlardan biriside kritik açıklıktır. Kritik açıklık paratonerle topraklama arasındaki iniş iletkeninin diğer iletkenlerle (elektrik tesisatı, zayıf akım tesisatı,telefon tesisatı vs.) arasındaki uzaklıktır. Bu açıklık belirli bir değerden küçük tutulduğunda iki iletken arasında endüksiyon yolu ile aşırı gerilimler oluşabilmektedir. Buda sistemlere zarar vermektedir. Kritik açıklık emniyetli bir uzaklığın altına düşürülmemelidir.
Bazı ülkelerde kabul edilen kritik açıklıklar Almanya’da 1,5m, ingiltere’de 1.83m,Hollanda’da 1m dir.
Topraklama; Topraklama malzemeleri olarak aşağıdaki malzemeler kullanılmaktadır. Topraklamanım yeterli seviyeye indirilememesi halinde bunlardan ikisi kullanılabilmektedir.
Bakır levhalar; 140m2 alanında 1mm, 1.5mm kalınlığında bakırdan yapılmış düz levhalardır.
Bakır çubuklar; 20cm, 16mm çaplarında 1m,1.5m boylarında üretilmişlerdir.
Galvanizli çubuklar; Sıcak daldırma ile kaplanmış demir çubuklardır.
Statik topraklama; ülkemizde fazla önemsenmeyen statik topraklama aslında elektronik cihazlar ve insan hayatı için önemlidir. Bina ve istasyonlardaki elektrik tesisatındaki arızalar nedeniyle binaya veya cihazlara kaçan elektriğin insanlara zarar vermeden toprağa boşalması için zorunlu olarak kullanılmalıdır.
Ayrıca bilgisayar ve vericiler gibi elektronik cihazların üzerinde biriken manyetik alanları toprağa boşaltmak için kullanılması zorunludur. TV verici istasyonlarında istasyonun bir köşesine topraklama barası yapılır istasyonda bulunan tüm cihazlar bu baraya bağlanır.

Koruma topraklaması; Canlıların dokunma ve adım gerilimlerine karşı korunmak için gerilim altında olmayan iletkenlerin topraklanması için yapılan topraklamaya denir.
Televizyon ve Radyo istasyonlarında Yıldırım ve Topraklama ile ilgili işlemler bir üste yer alan maket şekil içerisinde kalın çizgilerle belirtilmektedir. Anten, kulesindeki paratoner için yapılan topraklama bağımsızdır. Ancak anten kulesi, binanın ve cihazlara ait topraklama yapıldıktan sonra, topraklama baraları birleştirilir. Enerji hattı üzerinden gelebilecek yıldırımdan korunmak için gerilim sınırlayıcı kontaktörler bulundurulmalıdır. Anten kulesi tepesi üzerindeki ikaz ledlerinin bulunması yıldırımın çekmelerinde etkili bir faktördür. Bu amaçla led’i besleyen enerji hattı da yıldırımdan etkilenebilecektir. Bu hat üzerinde de koruyucu devrelerin bulundurulması koruma sağlayacaktır.
Topraklamaların Birleştirilmesi
Bir tesiste koruma,işletme ve yıldırım topraklamaları bulunabilirler.Koruma ve işletme topraklamalarının bir kısmı alçak gerilim ve bir kısmı yüksek gerilim tesislerine ait olabilirleri. Bir tesiste bulunan bu çeşitli cins topraklamaların biri biri ile birleştirilmesi bazı faydalar sağladığı halde bazı Zaralarda yol açabilirler. Topraklamaların birleştirilmesinin sağladığı en önemli yarar , toplam topraklama direncinin düşmesidir. Böylece topraklamaların daha ekonomik bir şekilde gerçekleştirilmesi mümkün olur Ayrıca farklı topraklamaların birleştirilmesi ile , bu topraklamalara bağlı kısımlar arasında tehlikeli gerilim farklarının meydana gelmesi önlenmiş olur.Topraklamaların birleştirilmelerinden doğan sakıncaların başında tehlikeli potansiyel sürüklenmeleri gelir. Onun için ,65 V’dan daha büyük topraklayıcı gerilimlerinin baş göstermesi halinde ,sıfır hatları , kablo mahfazaları , su boruları , demir yolu rayları veya çitler üzerinden topraklayıcı geriliminin müsaade edilmeyen büyük bir kısmının civara sürüklenip sürüklenmediğini ve çok büyük temas ve adım gerilimlerinin meydana gelip gelmediklerini kontrol etmek gerekir.
Aşağıda birbirine bağlanabilecek olan topraklamaların en önemlileri özet olarak verilmiştir.
1) Santrallerin , bağlama ve transformatör istasyonlarının iç ihtiyaç tesisleri:Yüksek gerilim topraklama tesislerinin içinde bulunan ve yüksek gerilim tesisleri tarafından beslenen alçak gerilim tesislerinde bütün koruma ve işletme topraklamalarının birleştirilmeleri gerekir.
2) Bir yüksek gerilim topraklama tesisinin dışında bulanan alçak gerilim tesisleri:Böyle bir tesiste koruma ve işletme topraklamalarının birbirine bağlanabilmeleri için aşağıdaki şartların gerçekleşmesi gerekir.
• Müşterek bir topraklayıcı tesisinde topraklayıcı gerilimi 65 V’ u aşmamalıdır.
• Yüksek gerilim istasyonu sanayi tesislerinin içinde veya kapalı bir binada bulunmalıdır.

3) Yıldırım topraklaması , alçak gerilimtesislerinde hava hattına ait koruma iletkeni , transformatör istasyonlarının ve bağlama tesislerinin topraklama tesisleri ile bağlanırlar. Ayrıca bina yıldırımlık tesislerinin koruma işletme topraklamaları ile bağlanmasına müsaade edilir.


https://www.kontrolkalemi.com/forum/attachments/topraklama_cesitleri-zip.47787/
 
arkadaslar yazılar çok karışık oldu kusuruma bakmayın ara bununda bi çözümü var aradıgınız kelimeyi bulmak için Ctrl + F Tusuna basıp Arama Yapın Sonuç a Ulaşın Saygılar :D
 
kardeş valla her dersten sonra kontrolkalemi.com a girip senin verdiğin biligilerle tekrar yapıorum ne kadar ders alıyorsam sen de fazlası var saolasın...bu üniversitelerde de iş yok zaten:)
 
büyüksün aga bu bilgileri internetten bulmak uzun uğraşlar istiyor. 8)
 

Forum istatistikleri

Konular
127,952
Mesajlar
913,885
Kullanıcılar
449,600
Son üye
psychedelic

Yeni konular

Geri
Üst