Fiber Optik Sistemleri Hakkında Bilgiler

CENK45

Üye
Katılım
16 Tem 2008
Mesajlar
123
Puanları
1
Yaş
33
FİBER OPTİK
Işıkla Bilgi İletiminin Tarihçesi
Bilgi iletişiminin tarihi oldukça eskiye dayanır. İlk çağlar da insanlar ateş yakarak iletmek istedikleri bilgiyi bir tepeden bir başka tepeye aktardılar. Işık kullanılarak yapılan bu ilk haberleşmede insanoğlu belki de hala en gelişmiş ışık detektörünü yani gözü kullandı. Işık üreten kaynak olarak ateş kullanılıyor ve bu ışık insan gözünce algılanarak bilgi bir noktadan başka bir noktaya aktarılıyordu. Bu ilkel haberleşme tekniğinde en büyük zorluk, haberleşme uzaklıklarının çok sınırlı olması ve aktarılan bilginin büyüklüğünün az olmasıydı. Daha sonra gelişen iletişim teknolojileri, çeşitli ortamlardan yararlanarak bilginin iletilmesini sağladılar. Genelde kullanılan, elektrik sinyalinin iletken kablolar aracılığı ile bir noktadan diğerine aktarılmasına dayalı teknolojilerdi. Ancak son elli yıl içinde, ilk çağlarda kullanılan yönteme geri dönüldü ve iletişimde ışık tekrar kullanılmaya bağlandı. Son yıllardaki iletişim teknolojilerindeki sıçramanın tabanında fiber optik teknolojilerindeki gelişmeler olduğunu söylemek doğru olur.
Işık Kuramının Tarihçesi
Fiber optiğin insanları neden bu kadar çok etkilediğini daha iyi anlamak için belki de önce ışık kuramının tarihçesine bakmak gerekir. Son 3000 yıl içinde ışık ile ilgili geliştirilen onlarca kuramdan önemli olan altısı Şunlar:
1) Dokunma
2) Işıma
3) Parçacık
4) Dalga
5) Elektromanyetik
6) Kuantum
Bilgi iletişiminin tarihi oldukça eskiye dayanır. İlk çağlar da insanlar ateş yakarak iletmek istedikleri bilgiyi bir tepeden bir başka tepeye aktardılar. Işık kullanılarak yapılan bu ilk haberleşmede insanoğlu belki de hala en gelişmiş ışık detektörünü yani gözü kullandı. Işık üreten kaynak olarak ateş kullanılıyor ve bu ışık insan gözünce algılanarak bilgi bir noktadan başka bir noktaya aktarılıyordu. Bu ilkel haberleşme tekniğinde en büyük zorluk, haberleşme uzaklıklarının çok sınırlı olması ve aktarılan bilginin büyüklüğünün az olmasıydı. Daha sonra gelişen iletişim teknolojileri, çeşitli ortamlardan yararlanarak bilginin iletilmesini sağladılar. Genelde kullanılan, elektrik sinyalinin iletken kablolar aracılığı ile bir noktadan diğerine aktarılmasına dayalı teknolojilerdi. Ancak son elli yıl içinde, ilk çağlarda kullanılan yönteme geri dönüldü ve iletişimde ışık tekrar kullanılmaya başlandı. Son yıllardaki iletişim teknolojilerindeki sıçramanın tabanında fiber optik teknolojilerindeki gelişmeler olduğunu söylemek doğru olur.
Bundan sonra gelen iki kuram Sir Isaac Newton’un parçacık ve Christian Huygens’in dalga kuramları. Bunlar, birbirlerine tam ters olan kuramlar. Newton’a göre ışık, parçacık olarak düz bir doğru üzerinde yol alır. Diğer bir deyişle, ışık bir parçacıklar sistemidir ve kaynağından her yöne düz doğrular boyunca yol alırlar. Newton’un fizik yasası parçacıkların cisimlerden yansımasını açıklayabiliyor.
Huygens’in dalga kuramıysa Newton’un kuramını kabul etmiyor. Ona göre, eğer ışık parçacıklardan oluşsaydı birbiriyle karşılaşan ışık demetleri kendilerini yok etmeliydi. Huygens, bunu açıklamak için karşılaşan iki su akıntısını örnek gösterdi. Gerçekten de ışık bu tür bir özellik göstermez ve ışık demetleri karşılaştıklarında, su örneğinde olduğu gibi bir olay ortaya çıkar. Huygens, ışığın bir dalga olduğunu öne sürdü. Ona göre ışık ve onunla ilgili olaylar tümüyle dalga kuramına oturtulmalıydı. Buna karşılık Newton da eğer ışık bir dalgaysa, hareketi boyunca rastladığı köşeleri de dönmesi gerektiğini ancak bunun olmadığını ileri sürerek dalga kuramını reddetti. Bu günün bilimiyse ışığın gerçekten köşeleri döndüğünü gösterebiliyor. Ancak dalga boyunun çok küçük olmasından dolayı bu olayın gözle görünmesi olası değil. Dalga kuramı, 1800’lü yıllarda kabul gördü. Parçacık kuramıysa 1800’lü yılların sonlarında tamamen terk edildi.
On dokuzuncu yüzyılın sonlarında, James Clerk Maxwell, elektrik, manyetizma ve ışığı bir kuramda birleştirdi. Bu kurama elektromanyetik teori dendi. Maxwell’e göre ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalgaların özelliklerini gösterir. Maxwell, elektrik ve manyetik sabitlerden yararlanarak ışık hızını hesapladı. Gerçi bulduğu hız kabul edilebilir değer içinde; ancak Maxwell’in teorisi fotoelektrik etkisini açıklayamıyor.
1887 de Heinrich Hertz, metal üzerine gönderilen belli özellikteki ışığın, elektronları metal yüzeyinden
kopardığını buldu. 1900’de Max Planck, ışık ile ilgili başka bir kuram geliştirdi. Buna göre ışık, içinde enerji olan küçük bir paket içinde iletilir ve madde tarafından emilir. Bu küçük pakete ―quanta‖ adını verdi. Quanta içindeki enerji, ışığın frekansıyla doğru orantılı. Albert Einstein, Planck’ın kuramını tamamen kabul ederek ışığın quanta
olarak iletilmesinin ve madde tarafından emilmesinin yanında, ışığın quanta olarak yol aldığını ileri sürdü. Einstein, quanta birimi olarak foton’u kabul etti.
1905’te Einstein kuantum kuramını kullanarak fotoelektrik olayını açıkladı. Kuantum kuramı, iki temel kuramın, parçacık ve dalga kuramlarının birleştirilmesiydi. Bu birleştirme zorunluydu; ışık bazen parçacık bazen de dalga özelliği gösterir. Işık, enerji nin bir biçimidir. Fotonlar, ancak bu fotonun hareket halinde olması durumunda var
olurlar. Işığın boşluktaki hızı saniyede 3x108 metredir.
Fiber optikle ışığın en yakın ilişkisi yansımadır. Newton yasaları ışığın nasıl yansıdığını açıklayabiliyorlar Newton kuramına göre, ışığın bir yüzeye gelme açısıyla yansıma açısı değişmez. Işığın çok önemli bir özelliğiyse kırılma.Kırılma, ışığın değişik ortamlarda yol almasında ortaya çıkıyor. Belli özellikteki bir ortamdan başka özellikteki ortama
geçerken ışık kırılır. Işığın hızı, hareket ettiği ortama bağlı olarak bazen artar bazen de azalır. Örneğin, ışık havada camdan daha hızlı gider. Bir ortamdan diğeri. ne geçerken ışık hızının değişmesi onun kırılmasına neden olur.
Fiber optik teknolojisi, son bir kaç yüzyıldır geliştirilen ışık kuramının bir sonucu. Gördük ki eski zamanda ateş sinyal aracı olarak kullanılmıştı. Bilim geliştikçe haberleşmede kullanılan sinyalleme Şekil değiştirdi ve bu işlem çok daha karışık bir hale geldi. Işıkla ilgili bilim adamlarının çalışmaları çok eskiye dayanmakla birlikte, fiber teknolojilerindeki
gelişme oldukça yeni.
Fiber Kablolarla İletişim
Yukarıdaki şekilde göründüğü gibi herhangi bir bilgi (ses, veri ya da görüntü) önce elektrik sinyaline dönüştürülür. Işık kaynağında bu sinyaller ışık sinyaline çevrilir. Burada önemli bir nokta fiberler hem sayısal hemde analog sinyali taşıyabilir. Birçok kimse fiberlerin sadece sayısal sinyalleri taşıdığını düşünebilir (ışık kaynağının
açılıp kapanmasıyla). Sinyal bir kere ışık sinyaline çevrildikten sonra, fiber içinde detektöre gelinceye kadar yol alır.
Burada ışık sinyali tekrar elektrik sinyaline dönüştürülür. Son olarak da elektrik sinyalinin Şifresi çözülerek bilgiye (ses, veri veya görüntü) dönüştürülür.
İletişimde kullanılan fiber kabloların temel üç bölümü vardır.Uç kısımda fiberin damarı, daha sonra çeperi ve en
dış bölümde ise kablonun kaplama bölümü bulunur (Şekil 3). Aşağıdaki şekil, tipik bir fiber kablonun ara kesitini gösteriyor. Damar, ışık sinyalinin yol aldığı, daha başka bir deyişle bilginin iletildiği bölüm. Telekomünikasyon endüstrisinde genel olarak 8.3 mikrometreden 62.5 mikrometreye kadar olan büyüklüklerde fiber kablolar kullanılıyor.
Standart telekomünikasyon fiberinin damar çapı 8.3 mikrometre (tek mod ), 50 mikrometre (çoklu mod),62.5 mikrometre (çoklu mod) civarında bulunuyor.
Damar bölgesini saran çeperin yarı çapı 125 mikrometre, fiber kablonun tamamının yarı çapıysa 250 mikrometre ile 900 mikrometre arasında değişir. Bu büyüklükleri insan saçının çapı olan 70 mikrometre ile karşılaştırabiliriz.
Işık, fiber optik kabloya girdikten sonra dengeli bir şekilde yol alır ve buna mod denir. Fiber kablonun tipine bağlı olarak yüzlerce çeşit mod oluşturulabilir. Her mod, giriş ışık sinyalinin bir bölümünü taşır. Daha genel bir deyişle fiber içindeki mod sayısı, fiber damarının çapına, ışığın dalga boyuna ve sayısal açıklık denilen büyüklüğe
bağlıdır. Günümüzde kullanılan temel iki tip fiber optik kablo vardır: tek mod ve çoklu mod fiberler. Bunları dış görünümleriyle ayırmak olası değildir. Her iki tip de iletişim ortamı olarak kullanılmakta. Ancak değişik uygulamalarda değişik şekillerde kullanılırlar.
Tek Mod Fiberler: Işığın tek bir modda ya da tek bir yolda ilerlemesine olanak tanırlar (şekil 4). Damar çapları 8.3 mikrometredir. Tek modlu fiberler, düşük sinyal kayıplarının olduğu ve yüksek veri iletişim hızının gerektirdiği durumlarda kullanılırlar.
Çoklu Mod Fiberler: Işığın birden fazla modunu ileten fiberlerdir. Tipik damar çapları 50 mikrometre ile 62.5 mikrometre arasında değişir. Çoklu mod fiberler, kısa mesafeli uygulamalarda kullanılırlar.
Fiber Optiğin Temel Prensipleri
Fiber kablonun çalışması, ışığın tam yansıma prensibine dayanıyor. Işık, fiber kablo içinde (damarında) çeperlerden yansıyarak ilerler.Tam yansımanın olabilmesi ışık demetinin fiber kabloya giriş açısına bağlıdır.
Kırılma indeksi, ışığın bulunduğu ortamdaki yayılım hızını gösteren bir kavram. Işık boşlukta saate 300 000 km’lik bir hızla ilerler. Kırılma indeksi, ışığın boşluktaki hızının herhangi bir ortamda hızına bölünmesinden elde edilir:
Kırılma indeksi=(Işığın Boşluktaki Hızı)!(Işığın Ortamdaki Hızı)
Boşluktaki kırılma indeksi bu durumda 1 dir. Aşağıdaki tablo, bazı tipik ortamlar için kırılma indeksini gösteriyor.

ORTAMTİPİK KIRILMA İNDEKSİ(KIZILÖTESİ)IŞIK HIZI
Boşluk1Hızlı
Hava1,0003
Su1,33
Fiber Kablo Çeperi1,46
Fiber Kablo Damarı1,48Yavaş

Bir ortamda ilerleyen ışık, başka bir ortama girdiğinde herhangi bir kayıp olmadan geldiği ortama geri yansırsa buna tam yansıma denir.
Fiber kabloların çeperi (dış kaplama bölümü) ve damarı (iç bölümü) değişik malzemelerden yapıldığı için fiber içinde ilerleyen ışık, damar bölgesinden çepere çarptığında tam yansımaya uğrayarak damara geri döner. Tam yansımanın olabilmesi için çeperin kırılma indeksinin damarınkinden daha az olması gerekir.
Işığın fiber kablo içinde tam yansımaya uğrayarak ilerleyebilmesi için fiberin damar bölgesine giren ışığın belli bir açının altında olması gerekir. Bu kritik açının oluşturduğu hayali koniye kabul konisi denebilir. Kabul konisinin büyüklüğü, çeper ve damar kırılma indeksine bağlıdır. Ekli dosyayı görüntüle fiber-optik-hakkinda-bilgiler-Icin.pdf
 

Forum istatistikleri

Konular
128,119
Mesajlar
915,165
Kullanıcılar
449,824
Son üye
Lecterer

Yeni konular

Geri
Üst